Polygenic risk prediction in diverse populations and contexts: scientific considerations

Alicia Martin, PhD
CERA ELSI-hub
January 12, 2024

Genetic variation reflects human history

Henn, Cavalli-Sforza, and Feldman (2012). PNAS

Equity in genomics: a long shot?

Martin, A. R., et al., (2019) Nature Genetics

National biobanks do not match global or national diversity

a

USA

US 2020 census race/ethnicity

Global population

UK
UK Biobank genetic ancestry

The rise of the polygenic score

Polygenic risk score: risk prediction of an individual's phenotype from DNA

Staggering disparities in accuracy

Why?

- Causal variants are shared
- Estimated effects (i.e. from GWAS) vary with allele frequency, LD

Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584-591 (2019).

PRS may help prevent heart disease when considered alongside known risk factors

metaGRS Quintile (Males)
$-80-100 \%-60-80 \%$ - 0-20\%

Inouye, M., et al. (2018).
Genomic Risk Prediction
of Coronary Artery
Disease in 480,000
Adults: Implications for
Primary Prevention. J.
Am. Coll. Cardiol. 72,
1883-1893.

PRS (in European ancestry) already perform better than well-known individual heart disease risk factors, improves existing models

Variants along allele frequency spectrum inform risk additively (e.g. breast cancer)

- BOADICEA =Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm
- Note use of absolute risk, varies by population (e.g. prostate cancer)

BOADICEA risk factors considered:

- Family history: cancers (breast, ovarian, prostate, and pancreatic)
- Age (at cancer diagnosis or current/death for all unaffected family members)
- Genetic risk (rare variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM and common variants from PRS)
- Lifestyle/hormonal/reproductive: height, BMI, parity, age at first birth, age at menarche, age at menopause, use of oral contraceptive, use of hormone replacement therapy, alcohol intake
- Mammographic density
- Breast tumor morphology: ER , progesterone receptor, HER2 receptor, CK14, CK5/6 status
- Demographic: country of origin, Ashkenazi Jewish origin

Combined model (allows for missing information)

Mivivivivi

II II II II II II II II II
\leq Population risk

Lifetime risk < 17\%

Screening

- Mammogram every

2 years (50-69)
Clinical breast exam
every 1-2 years

Intermediate risk
17% Lifetime risk < 30\%

Screening

- Mammogram every 1-2 years (40+)
- If breast density $>75 \%$: annual mammogram, consider ultrasound
- Clinical breast exam (annual)

High risk

Lifetime risk $\geq 30 \%$

Screening

Annual mammogram (35+ if MRI, 30-35 otherwise)
Consider annual MRI (30+)
Clinical breast exam (annual)

- Chemoprevention? - Mastectomy?

Key takeaways

- Eurocentric genetic study biases influence the accuracy of polygenic scores - highest in training population, decays with genetic divergence based on human history
- PRS will never be diagnostic. Use is in risk stratification context and should be integrated alongside other known clinical risk factors
- PRS can also be modeled with known rare variants
- Differences in prevalence motivate use of absolute risk and evaluation metrics

