Skip to main content

Genetic researchers are rapidly adopting methods of whole exome and whole genome sequencing to identify the hereditary bases for human disease as the cost of sequencing rapidly declines and the pipelines for analysis and databases of normal variation become available and more robust. Although most researchers have focused on particular diseases, comprehensive genome analysis also provides data about susceptibility to hereditary conditions beyond the original study aims.

Exome sequencing and whole genome sequencing (ES/WGS) are rapidly emerging as important tools in human genetics research. Unlike conventional approaches, ES/WGS can putatively identify all functional variation in the entire coding sequence of a research participant. As a result, both the number and scope of findings with clinical utility are substantially greater than anticipated by existing guidelines and traditional approaches to return of results.

When individuals are queried about whether or not they wish to receive individual research results about themselves that are discovered in the course of genomic research, the majority indicate that they prefer receiving all results, including those that are of limited validity and actionability. These preferences are in sharp contrast to the recommendations of experts who are wary of the potential for confusion and outright harm if questionable results are returned, and thus generally recommend returning only results of high validity and actionability.

Chromosomal Microarray Analysis (CMA) is a genome-wide technology that allows for identification of genomic alterations, such as deletions and duplications, at an unprecedented resolution. However, many genetic variations are identified that have unknown or uncertain clinical significance. New clinical guidelines recommend CMA testing for children with Autism Spectrum Disorder (ASD). ASD is one of the most common serious developmental disorders, found in almost 1% of children in the United States.

Innovations in next-generation DNA sequencing technologies, accompanied by exponential drops in cost, have made it possible for clinicians to begin to use whole genome sequencing (WGS) to diagnose, treat, and predict disease. The extent to which WGS will improve health outcomes on a population level, however, will depend on effective oversight of its commercialization and use.

New technologies are enabling the arrival of the much awaited affordable genome the ability to sequence an individuals or a tumors entire genome quickly and inexpensively [whole genome sequencing (WGS)]. WGS is now being offered in clinical care and is expected to become more widely used in the near future, particularly in cancer. However, this technological advance threatens to outpace our ability to use it effectively in clinical practice and to address the associated health policy issues.

The Clinical Sequencing Exploratory Research (CSER) and Return of Results Consortium (RoRC) programs are designed to investigate critical questions about the application of genomic sequencing to clinical care of individual patients, from generation of genomic sequence data, to interpretation and translation of the data for the physician, to communication to the patient, including an examination of the ethical and psychosocial implications of bringing broad genomic data into the clinic.

This application proposes the continuation of a Center for Research on the Ethical, Legal & Social Implications of Psychiatric, Neurologic & Behavioral (PNB) Genetics at Columbia University Medical Center (CUMC), in collaboration with The Hastings Center. We have been funded since April 2010, initially under a developing center award and since 2013 as a full Center of Excellence in ELSI Research (CEER).

H3Africa provides an unprecedented opportunity to study genetic and genomic technologies into research, diagnosis, intervention, and treatment for sickle cell disease (SCD) in Africa. As such, involving a few African Centers already involved in the forefront of Sickle Cell Disease Research in Africa with moderate expertise on psychosocial research (Cameroon), newborn screening (Ghana) or genomics studies (Tanzania) could serves as a reservoir for rigorous examination of a wide range of accompanying ethical, psychosocial, cultural, and policy issues.

Huntington's disease (HD) has for decades served as a model for how we think about genetic testing, and its benefits and risks for tested individuals and their families. In 1983, the gene for HD was mapped to chromosome 4, allowing linkage tests to be developed for use in presymptomatic genetic testing for HD. In 1986, Johns Hopkins launched one of the first two such testing programs in the United States.